Briefly: Pull up sunken nutrients to create
CO₂-capturing plankton blooms, then push new organic carbon into the ocean
depths before it reverts to CO₂. This push-pull pump avoids many of the
problems of up-only pumps for fertilizing the ocean surface.
An emergency drawdown of atmospheric CO₂
would address all three issues—but it would need to be big, quick,
and sure-fire.
How big? Aim
at removing all 350+ GtC emitted since 1750.
How quickly? We must back
out of the danger zone before being weakened by resource wars and economic
collapse. During a 20 yr project period, another 250 GtC are likely
be emitted from business-as-usual, so make that goal 600 GtC. That's
30 GtC/yr. Once the drawdown is complete, half of the sequestration
capacity might still be needed to continuously counter out-of-control
emissions from developing countries; the rest goes on standby for
future emergencies.
Sure to work the first time? With no second chance, our initiative
needs to be sure-fire, since we must avoid the human population crash that
a global economic collapse would trigger.
Most candidates suitable for long-run
improvements will be too small, too slow, or too uncertain for an emergency. Even fertilizing the
ocean surface enough to settle out 30 GtC/yr of the usual debris into the
depths would require an unachievable 3x increase in ocean
productivity worldwide.
The proposed
push-pull pump plantations need less than 1% of
the ocean surface. Pump up nutrients from the depths to enhance plankton production
(what winter winds do)—but with an essential addition.
Simultaneously, emulate the natural downwellings of eddies and
whirlpools. Pump down the carbon-enriched surface waters within a week, before
the new organic carbon reverts to CO₂. This also sinks the 240x larger
amounts of organic carbon from feces and decomposition, which are dissolved in
surface waters. This sinks
far more organic carbon than is needed to offset any upwelled CO2.
A plankton
plantation that uses windmill power.
Wave-powered pumps should be more
economical.
Just as farmers grow a nitrogen-fixing crop
of legumes and then plow it under, we would be growing a carbon-fixing crop of
plankton and then pumping it under.
This simplified sketch shows the ballpark in
which we are forced to play. Charge the experts gathered for the Second
Manhattan Project with deploying this or something equally big, quick,
and sure-fire within four years using wartime priorities. If nothing major
intervenes in the following ten years, the climate threat might be cut in half.
This latest version of the CO2 cleanup was a finalist in MIT's 2013 geoengineering climate contest.

No comments:
Post a Comment